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Guided by the concept of direct and systematic elaboration of FG
heterocyclic compounds via-&H bond functionalizatior,we have L\lj\ Carviati
recently developed new methods of C-arylation of (NH)-heteroare- N™ ™K < C-arylation
nes such as indoles, pyrazoles, and imidazblds. this context, N-arylation ——> J|

we became interested in the possibility of C-arylation of saturated
(NH)-heterocycles with haloarene donors. To achieve this goal
would require disfavoring known N-arylation pathways to the Scheme 1. Lead Identification

Figure 1. C—H bond versus NH bond arylation.

benefit of (sg) C—H bond functionalization (Figure 1). Although Ph-I
this proposition may seem unlikely, it has been demonstrated that Q W Q\Ph * Q\NQ * Q
ruthenium fragment [RuHCI(Prs),], generated in situ, undergoes H 05,004, dioxane ; 2 Ph
selective insertion into €H bonds at thea-position of free 120°C 8
pyrrolidine3 We followed this lead, however, with no success, M] 1/2/3/4 K
highlighting Fhe _challenge of translatl_ng t_he kn_owledge acquired Ru(H)2(CO)PPha)s traces Y
by C—H activation (metalation) studies into direct-& bond IrH(CO)(PPha)s traces Ph
arylation processes. An alternative strategy would involveHN RhCI(PPhg)s 18/11/0/0
bond metalation, followed bg-hydride elimination and arylation => RhH(CO)PPhs); () 46/9/114 A
of the resulting imine intermediate. This latter scenario forms a => RhCICO)PPhy); 6)  45/4/1/3 (acid workup)
mechanistic rationale for a new synthetic method described herein
for oxidative C-arylation of free (NH)-heterocycles. Scheme 2. Ligand Degradation and Dehalogenation
To explore the feasibility of this cross-coupling reaction, IOOMe OMe
pyrrolidine and iodobenzene were selected as the parent substrates. N + @
A systematic study was undertaken to investigate three key N 5 mol% OMe
variables, namely the metal source, solvent, and base. This exercise . RhCI(CO)(PPhg), 7.31% + 38% (GC)
provided us with an exciting lead as well as indispensable insight Cs,C03, dioxane
into the system in question (Scheme 1). Remarkably, rhodium(l) 120°C O\Q
complexess and 6 catalyzed the formation of 2-phenylpyrroline N
(1) as the main product in 45% yield. We note that only rhodium 1,10%
complexes out of a broad array of examined transition metals were . »
capable of affording appreciable amounts of C-arylation products. Scheme 3. Optimized Conditions*
Compound2 was also formed as the minor product, together with 5 mol%
a small amouni-phenylpyrrolidinet Upon acidic treatment of the U RACICOP(FuNsl2 O\Ph + O\N + O
crude reaction mixture, additional produétwas detected; this ﬁ 2 equiv TBE N N \j N
compound is a result of arylation of productl. 12eq ©8200s dioxane 1 2 s
Interestingly, the cross-coupling between pyrrolidine and 4-io- 120°C Ph-I 78/5/0%
doanisole afforded the desired prodddn 31% yield, as well as Ph-Br  73/4/0%

2-phenylpyr.roline1 and anisole (Scheme. 2). This result reygaled ap(Fur) = tri-(2-furyl)phosphine, TBE= tert-butylethylene. Condi-
two major side reactions largely responsible for the low efficiency tions: pyrrolidine (1.2 equiv), PhX (1 equiv), RhCI(CO)[P(Fdz)5 mol
of this process. The formation of compoutdeflects carbor %), TBE (2 equiv), CsCO; (1.2 equiv), dioxane, 1260C, 10 h. 16-15%
phosphorus bond cleavage in the triphenylphosphine ligand a”ddf;?islofreerlﬁiogvgfgugsegf t(ti?en;ﬁﬁ;usl?fvﬁ aelxliioe\f/g%mﬁ)bmfeic%it\;gg
SPbS_‘?q“em phenyl gro_up migration, W_h'le the prese_nce of a Zf reagents and anh?/drous conditions are required (see Supporting Informa-
significant amount of anisole reveals facile dehalogenation. tion for details).

This insight guided our optimization studies, which began by
addressing the ligand stability and phenyl group scrambling. A panel phosphine [(FugP] as a promising candidate® Indeed, the
of ligands containing a plethora of phosphines and imidazolyl corresponding rhodium complex RhCI(CO)[P(Rly)(8) proved
carbenes was examined (Supporting Information). A clear parallel to be a superior catalyst, leading to a 2-fold increase in the efficiency
between rhodium and palladium chemistry was seen in this context, of the coupling reaction, while no transfer of the furyl group was
as ligands known to suppreSshydride elimination, such as bulky  observed and the extent of dehalogenation was reduced. The latter
monodentate phosphines or bidentate phoshines, promoted N-process was further abated (to approximately 18%) by addition
arylation to give 3.5 In contrast, triphenylphosphine favored of tert-butylethylene (TBE) as the hydrogen acceptor (Scheme 3).
oxidative C-arylation, albeit with modest overall efficiency. In our Under these optimized conditions, pyrrolidine and iodobenzene
search for a robust alternative todPhwe identified tri-(2-furyl)- can be coupled in one step to furnish produah very good yield
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Table 1. Reaction Scope: Halo(hetero)arene Donors? Scheme 4. C-Arylation of Chiral Substrates?
Ph-I
(—1 (Het)Ar-X - = +
N a Q\(Het)Ar Qcone a FN/)\COQME @\Cone
H H
19, 64% 23%, racemic
TBDMSO, TBDMSQ,
P P P 7 Ph-I 7
OMe CO,Me Nig 20 j
7, 62% 9, 56% 10, 39%
EtO.C Ph-I Et0,C
O G UL
N N’ 2 N b N”>Ph
s |
11, 44% 12,31% 3 /\ E0,C
Ps | Q\Br 2 24, 11%
o
aX =1 for compounds?7, 9, 10; X = Br for 11, 12. Conditions: b N //
pyrrolidine (1.2 equiv), (Het)Ar-X (1 equiv), RhCI(CO)[P(F&R (5 mol S

%), TBE (2 equiv), C&CO;s (1.2 equiv), dioxane, 120C, 12-14 h. 10-
15% of dehalogenation occurred for compouiid8. 25—30% of dehalo-
genation occurred for compound§—12.

Table 2. (NH)-Heterocycle Substrate Scope?

aConditions: (a) heterocycle (1.2 equiv), Phl (1 equiv), RhCI(CO)[P-
(Fur)]2 (5 mol %), TBE (2 equiv), G&£Os (1.2 equiv), dioxane, 120C,
15 h; (b) heterocycle (1.2 equiv), (Het)Ar-X (1 equiv), RhCI(CO)[P(Elur)
(5 mol %), TBE (2 equiv), G£O; (1.2 equiv), dioxane, 150C, 16 h.

| n and racemization occurred, affording dehydroprolli®and race-
n mized starting material (Scheme 4).
/j-)N . @( _ p g ( )

H

In contrast, $-substituted substrates worked well, showing
N" P N">Ph N e N7 Ph

exclusive arylation at the less hindereemethylene group. Thus,
unknown compound®1 and 23 were prepared from protected
3-hydroxypyrrolidine20 and ethyl nipecotat22 in 59% and 52%
yield, respectively. Although the isolated yields were modest, the

1, 78% 13, 65% 14, 51% 15, 52% direct method described herein, even in the present state of
o Et YO optimization, competes favorably with traditional multistep ap-
[ j\ E l N proaches. This is particularly true in the case of more complex
N">Ph N2 Ph [ ,l compounds such @310
N” “Ph The analysis of this system revealed that relatively low efficiency
16, 62% 17, 53% 18, 56%

may be ascribed to three key processes. First, nonproductive
reduction of haloarene donors (dehalogenation) is always present,
to the extent of 1615% of the halide (and up to 30% with
haloheteroarene donors, Table®2)! Second, heterocyclic rings
larger than pyrrolidine require a higher reaction temperature, which
in turn increases other haloarene degradation pathways. Third,
catalyst decomposition represents the most serious limiting factor,
pparticularly at higher reaction temperatures.
The limits of this method can be illustrated in the condensation
of a mismatched reaction couple, such as ethyl nipecotate and
2-bromothiophene, which afforded a low yield of prod24t(11%

aConditions: heterocycle (1.2 equiv), Phl (1 equiv), RhCI(CO)[Pdur)
(5 mol %), TBE (2 equiv), G&£LOs (1.2 equiv), dioxane. Reaction was
performed at 120C for 1. Reactions were performed at 150 for 13—18.

(78%), together with a small amount of amidide@nd compound
4 (<5%). The oxidative C-arylation of pyrrolidine with iodobenzene
represents the parent example of a new chemical transformatio
which unites dehydrogenation and arylation in one process.
Subsequently, we investigated the scope of this methodology
starting with haloarene donors. Both electron-donating and electron-~, ; . .
) ) . ) " yield, Scheme 4). In this case, an unreactive acceptor required a
withdrawing substituents (in the 4-position) were tolerated, although ;. . . .
. high reaction temperature, which at the same time caused fast
the yields were lower compared to the parent substrate (Table 1). We o
. ) . decomposition of an unstable heteroarene donor.
were particularly interested in the prospect of (NH)-heterocycle L - . . .
. . Last, preliminary mechanistic studies were carried out to establish
heteroarene coupling. To our delight, compourids-12 were

df lidi dth ding iod b a crude framework of the catalytic cycle. The parent reaction
preépared from pyrrofidine an the corresponding 10do- oF Dromo- o, yeen pyrrolidine and iodobenzene was used for these investiga-
heteroarenes in one step. Lower efficiency may be ascribed to lower

i i _ tions. When the reaction mixture was monitored %1 and 3P
stability of the haloheteroarenes in comparison to that of haloben- \vR at 80°C, two major products were identified as complexes
zenes (Table 1). 25 and 30, and their structures were confirmed by independent
In the next step, we evaluated the scope of (NH)-heterocyclic gynihesis. Comple25 showed identical behavior to the catalyst
substrates in terms of the size and character of the ring (Table 2)-precursor8 in terms of both kinetic profile and chemical yield of
Aware of the lower reactivity of piperidine in comparison with  the catalytic reaction. Our observations showed that oxidative
pyrrolidine; we were pleased with 65% yield of produ@& Seven-  4qdition of iodobenzene to rhodium(l) compl8xwvas facile and
and eight-membered rings were also arylated,>50% yield. thus may represent the first, and probably reversible, step of the
Furthermore, heterocycles of higher complexity, such as morpholine cycle (Figure 2, cycle A). This may be followed by a fast metalation
and piperazine, provided the corresponding products in good yields, of the N—H bond [KIE (kyu/kno) = 1.0], proceeding, for instance,
demonstrating promising functional group compatibility of this via Lewis-acid-promoted deprotonation of pyrrolidine to furnish
method? rhodium(lll) amido complex26. The subsequent events involve
Finally, oxidative C-arylation of chiral substrates was examined. S-hydride elimination and formation of imine rhodium hydri2ig
As expected,a-substituted pyrrolidines exemplified by proline followed by sequential carbometalation and a secf#ty/dride
methyl ester did not undergo arylation; instead, dehydrogenation elimination to yield 2-phenyl-1-pyrroline, coordinated to the
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P(Fur); P(Fur)s
glc;nh" H Cl— Fih’CO
Ph- I/(' P(Fur)g P(:I”ns . \
cycle A
[ \ E P(Fur)s
PFus Ny 17 pni 0o co
Cl—Rh—CO —— = N—Rh—CO ——=_ H— R
-HC
P(Fur)a P(Fur)z 27 Q
P(Fun; cycle B P(Fur)s
(el
(I)CI—F{h co “Rh-coO
- 7
(_7/"“ -Ha C?,Ph
Q‘ph 29 28

Figure 2. Proposed mechanistic rationale. Cycle A, fast and more
productive cycle. Cycle B, slow and less productive cycle. Compo8nds
25, and30 were prepared and characterized.

rhodium metal (cf29).22 Replacement of the organic product by

the phosphine ligand at the metal center would complete the cycle.

The key elementary reactions proposed in this cycle have firm
precedent, including-hydride elimination of amido complex¥s
and carbometalation of imin&¥&14with rhodium or closely related
metals. A large kinetic isotope effect [KIEK{-n/kc-p) = 4.3]
suggests that one or boffrhydride elimination steps are rate
determining. The phosphine ligand plays a key role in controlling
the partitioning between the oxidative arylation and N-arylation
pathways. Reductive elimination of benzene from comp&x

2-aryltetrahydropyridines can be prepared in one synthetic step from

the corresponding saturated (NH)-heterocycles and haloarenes. To
further expand the substrate scope of this method, a deeper
mechanistic insight needs to be gained, particularly with respect to

the catalyst stability.
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